An Algorithm for Constructing the Convex Hull of a Set of Spheres in Dimension D

نویسندگان

  • Jean-Daniel Boissonnat
  • André Cérézo
  • Olivier Devillers
  • Jacqueline Duquesne
  • Mariette Yvinec
چکیده

We present an algorithm which computes the convex hull of a set of n spheres in dimension d in time O(n d d 2 e + n log n). It is worst-case optimal in three dimensions and in even dimensions. The same method can also be used to compute the convex hull of a set of n homothetic convex objects of IE d. If the complexity of each object is constant, the time needed in the worst case is O(n d d 2 e + n log n).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sweep Line Algorithm for Convex Hull Revisited

Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...

متن کامل

Modelling Decision Problems Via Birkhoff Polyhedra

A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...

متن کامل

Convex hulls of spheres and convex hulls of disjoint convex polytopes

Given a set Σ of spheres in E, with d ≥ 3 and d odd, having a constant number of m distinct radii ρ1, ρ2, . . . , ρm, we show that the worst-case combinatorial complexity of the convex hull of Σ is Θ( ∑ 1≤i6=j≤m nin ⌊ d 2 ⌋ j ), where ni is the number of spheres in Σ with radius ρi. To prove the lower bound, we construct a set of Θ(n1+n2) spheres in E , with d ≥ 3 odd, where ni spheres have rad...

متن کامل

On Computing the Convex Hull of (Piecewise) Spherical Objects

We utilize support functions to transform the problem of constructing the convex hull of a finite set of spherical objects into the problem of computing the upper envelope of piecewise linear functions. This approach is particularly suited if the objects are (possibly intersecting) circular arcs in the plane or spheres in three-space.

متن کامل

The convex domination subdivision number of a graph

Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Geom.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1996